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When dealing with systems showing a Hopf bifurcation as the first instability from a 
conductive state leading to travelling waves, the distinction between convective and 
absolute instability becomes significant. The convectively unstable regime is charac- 
terized by the fact that a homogeneous disturbance may have a positive growth rate, 
while a single localized perturbation cannot trigger the onset of nonlinear convec- 
tion. In this paper the convective instability occurring in binary fluid mixtures for 
a negative separation ratio is utilized for amplifying intrinsic thermal fluctuations, 
which in this way become accessible to quantitative measurements. The experiments 
are performed in a quasi-one-dimensional convection channel which, by means of 
subcritical ramps, effectively prevents the reflection of the travelling waves from the 
sidewalls. Thus, that range of the convective instability within which linear waves 
can be observed is strongly enhanced. The temperature variations involved in the 
observed travelling-wave states are quantified by using the shadowgraph method. By 
resonantly stimulating the system with its linear Hopf frequency, the reflection ability 
and some coefficients of the amplitude equation appropriate for describing the con- 
vection features near onset can be determined. Without stimulation, travelling-wave 
states of very small amplitudes showing an erratic spatio-temporal behaviour occur 
spontaneously inside the convectively unstable regime. The temporal correlation func- 
tion calculated from the measured light intensity caused by these states is compared 
with a theoretical expression obtained from a Ginzburg-Landau equation containing 
a noise term. A very good agreement is found for the amplitude if thermal noise is 
assumed to be the reason for these fluctuating convection rolls, thus supporting the 
idea that the response of the system to thermal fluctuations is observed. 

1. Introduction 
In many nonlinear dissipative systems which are driven out of equilibrium by being 

subjected to an external stress R, a pattern-forming instability can arise when the 
driving force exceeds a critical value &. In fact much of the effort expended in 
investigating chaos and turbulence in fluids has recently been devoted to the under- 
standing of the common features of such bifurcations from a temporally and spatially 
uniform basic configuration to a state of lower symmetry showing a characteristic 
spatial and possibly temporal variation (for numerous examples see the conference 
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proceedings edited by Swinney & Gollub 1981; Wesfreid et al. 1988; Coullet & Huerre 
1990; Busse & Kramer 1990). Systems undergoing such behaviour are widespread in 
physics, chemistry and biology. Within fluid dynamics, the best-known examples of 
pattern-forming instabilities are probably the thermally driven Rayleigh-Benard sys- 
tem (Benard 1900; Rayleigh 1916; Chandrasekhar 1961) and rotating Taylor-Couette 
flow (Taylor 1923; Chandrasekhar 1961; DiPrima & Swinney 1981). In recent years 
the study of electrohydrodynamic convection in a nematic liquid crystal has become 
increasingly paradigmatic (for an overview see e.g. Bodenschatz, Zimmermann & 
Kramer 1988; Rehberg et al. 1989). These hydrodynamic systems share the advan- 
tage that they are easily controllable from an experimental point of view and that 
the fundamental equations describing their behaviour are usually well-known. 

Another example which has attracted much attention during the last 20 years is 
the Rayleigh-Benard convection in binary fluids (for an overview see e.g. Gershuni & 
Zhukhovitskii 1976; Platten & Legros 1984). Here a mixture of two miscible fluids like 
water-alcohol or 3He-4He rather than a pure fluid is used as the working medium. 
The two-component nature of the mixture gives rise to the occurrence of the Soret 
effect, which behaves as a second control parameter besides the Rayleigh number R. 
This new parameter, the so-called separation ratio w, measures the stabilizing (w < 0) 
or destabilizing (w > 0) effect of the concentration gradient. In this system, convection 
can happen not only in the form of a stationary roll pattern as in the normal Rayleigh- 
Benard experiment. Depending on y the possibility of a Hopf bifurcation also exists, 
leading to time-periodic states which in the simplest case can manifest themselves as 
travelling or standing waves (Knobloch 1986). A codimension-2 bifurcation occurs at 
the location in parameter space where the stationary and the oscillatory instabilities 
meet, a fact which attracted even more interest from the mathematical side (see e.g. 
Knobloch & Proctor 1981; Coullet & Spiegel 1983; Brand, Hohenberg & Steinberg 
1984). All these features have stimulated much theoretical and experimental interest 
in this system especially during the last decade. Early studies by Nield (1967), Hurle 
& Jakeman (1971), Legros et al. (1975), Chock & Li (1975) and others were followed 
by more specialized work. Experiments investigating the onset behaviour, such as 
determining the critical values and resolving the bifurcation structure in the linear 
and in the weakly nonlinear regimes, and also classifying the pattern variety in the 
strongly nonlinear range (Lee, Lucas & Tyler 1983; Walden et al. 1985; Rehberg 
& Ahlers 1985; Moses & Steinberg 1986; Kolodner et al. 1986a, 1987; Sullivan & 
Ahlers 1988; Lhost & Platten 1988, 1989; Steinberg et al. 1989; Bensimon et al. 1990; 
Kolodner, Glazier & Williams 1990; Schopf & Rehberg 1992) have motivated much 
effort towards a theoretical understanding of the various features (Brand & Steinberg 
1983; Knobloch 1986; Linz & Lucke 1987; Knobloch & Moore 1988; Cross & Kim 
1988; Schopf & Zimmermann 1989, 1990, 1993; Barten et al. 1989). 

The fact that pattern-forming instabilities share many similarities has resulted 
in their universal description through the general concept of amplitude equations. 
This weakly nonlinear approach has been very successful since the pioneering work 
of Newell & Whitehead (1969), who first introduced it for the case of a stationary 
bifurcation. Here the derived amplitude equation has the same form as the Ginzburg- 
Landau equation known from the theory of phase transitions. Following Stewartson 
& Stewart (1971) and Newell (1974), amplitude equations have also been applied 
to systems showing a Hopf bifurcation. They are now often called generalized 
or complex Ginzburg-Landau equations, because in this case complex coefficients 
are involved. For quasi-one-dimensional systems in particular, where the amplitude 
depends only on one spatial coordinate, this concept has been used for investigating 
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the rich scenario near the onset of binary-fluid convection. Through qualitative 
studies of the solution variety of these equations (Bretherton & Spiegel 1983; Cross 
1986, 1988; Thual & Fauve 1988; van Saarlos & Hohenberg 1990; Schopf & Kramer 
1991) and by calculating the respective coefficients describing the real system (Brand, 
Lomdahl & Newell 1986; Cross & Kim 1988; Schopf & Zimmermann 1989, 1990) 
considerable progress in understanding the experinental features has been achieved. 

In the neighbourhood of a hydrodynamic instability the fluid behaviour is very 
sensitive to perturbations. If external noise can be made small enough, so that the 
only remaining noise source is given by thermal fluctuations, these can be expected 
to manifest themselves macroscopically on length and time scales governed by the 
most unstable mode. This behaviour is reminiscent of equilibrium systems, where 
the appearence of macroscopic fluctuations close to a phase transition is well-known 
(see e.g. Stanley 1971). The basic idea for modelling intrinsic thermal fluctuations 
within the continuum description of fluid dynamics was introduced by Landau & 
Lifschitz (1957). The application to a concrete problem, namely the Rayleigh-Benard 
system, was carried out about 20 years ago (Zaitsev & Shliomis 1970; Graham 1974). 
Linear theories predict a divergence of the fluctuations at the bifurcation, so that 
in the vicinity of this point nonlinear interactions of the modes have to be taken 
into account (Graham & Pleiner 1975). The most interesting outcome of a nonlinear 
analysis is the so-called Brazovskii effect, in which the interaction of a large number 
of modes can change the nature of the onset of convection from a supercritical to 
a subcritical bifurcation (Swift & Hohenberg 1977; Hohenberg & Swift 1992). This 
effect occurs only in an extremely small neighbourhood of the critical point. 

While the statistical description of fluctuations in thermodynamic equilibrium 
is well-established in theoretical physics, hydrodynamic instabilities occur in non- 
equilibrium systems where the situation is less clear. Experimental investigations 
are therefore highly desirable for verifying the theoretical predictions. From the 
early calculations, however, it was evident that the influence of thermal noise on 
hydrodynamic bifurcations is so small that it hardly would be observed directly. Light 
scattering was proposed as the most powerful experimental method (see Lekkerkerker 
1975), a technique which indeed could demonstrate the existence of fluctuations 
below the onset of electrohydrodynamic convection in a nematic liquid crystal (Smith 
et al. 1975), but without achieving a quantitative measurement of the fluctuation 
intensity. The results of another experiment by Pedersen & Riste (1980) using 
neutron scattering techniques in a similar system were even harder to interpret. The 
first quantitative measurements were done indirectly by using the exponential growth 
of the fluctuations after an increase of the temperature difference from subcritical 
to supercritical values by Ahlers et al. (1981) and Meyer, Ahlers & Cannell (1991), 
who succeeded in observing fluctuating convection patterns in the Rayleigh-Benard 
system. The observed behaviour was indeed analogous to that predicted theoretically, 
but the measured fluctuations could only be explained by noise with a strength several 
orders of magnitude too large to be of thermal origin. It was only recently that the 
influence of thermal noise on the onset of convection was directly demonstrated 
in the electrohydrodynamic instability of a nematic liquid crystal by Rehberg et 
al. (1991 a, b )  and, using an intrinsic amplification mechanism, also in binary fluid 
mixtures by Schopf & Rehberg (1992). 

This latter experiment is the topic of the present paper. The influence of ther- 
mal noise on the Hopf bifurcation is investigated in a quasi-one-dimensional system, 
which is achieved by using a very narrow convection channel, and therefore allows the 
description by a one-dimensional Ginzburg-Landau equation. The observation of the 



238 FV Schopf and I. Rehberg 

noise-induced convection structures is made possible by the intrinsic amplification of 
the perturbations via the so-called convective instability, together with a drastically 
reduced reflection ability and a very sensitive measurement method. Section 2 briefly 
summarizes the theoretical efforts made in order to understand the influence of ther- 
mal noise and the results needed to interpret our experiments. In 9 3 the experimental 
apparatus, the shadowgraph method used for quantitative observations and the mea- 
surement method are described in detail. The nature of the convective instability is 
explained in $4, followed by a description of the influence and a measurement of 
the reflection coefficient. Furthermore some coefficients of the amplitude equation 
are obtained. The new results involving the noise-induced convection patterns are 
given in $ 5 .  The observed small-amplitude travelling waves are discussed and their 
strength, obtained by calculating the temporal correlation function, is compared with 
the theoretical results. Finally, the significance of the experimental results and some 
corrections to our preceding paper (Schopf & Rehberg 1992) are considered in the 
closing discussion in 9 6. 

2. The implementation of thermal noise in the theoretical description 
A technique for including theoretically the always present thermal noise into 

the fundamental hydrodynamic equations has already been shown by Landau & 
Lifshitz (1957). The currents included in these equations have to be expanded by 
adding stochastic terms which describe the thermal fluctuations. The hydrodynamic 
equations in their normally known forms are simply equations for the averages of 
the unknown variables. The actual expressions for these new terms have also been 
given by Landau & Lifshitz (1957) for the usual one-component Rayleigh-Bhard 
convection and by Khalatnikov (1957) for the case of binary fluid mixtures. (Strictly 
speaking, Khalatnikov was interested in how hydrodynamic fluctuations influence the 
behaviour of a superfluid liquid, and obtained equations which are very similar to 
those governing binary fluid mixtures.) The fundamental equations to be considered 
in the latter case are written in non-dimensional form (see also Lekkerkerker & 
Laidlaw 1977; Schopf & Zimmermann 1993) as 

(a, - v2)9 - R ax$ = (az4 a, - a,$ a,)$ - diqi, (2.la) 
(a, - -m2)r + a$ - R ax4 = (az$ a, - ax$ + 9) - aiji, (2.lb) 
(atv2 - p r v 4 ) 4  - Pr  I+I d , ~  - P r ( l +  y)a,8 = (az4 ax - a,$ a,)v24 

-az(aioxi) + ax(aiozi). (2.14 

Here, summation over repeated indices is assumed. 9, q and 4 represent the tempera- 
ture field, the concentration field and the stream function, respectively, while L = D / K  
is the Lewis number, Pr = V / K  the Prandtl number, 1c.’ = flkT/a7’o the separation 
ratio and R = agd3AT/~v  the Rayleigh number (see below). The thermal fluctuations 
are described by the terms involving qi, j i  and oij on the right-hand sides of (2.la-c) 
through their spatio-temporal autocorrelation functions given by 

(qi(r,  t)qj(r’, t’)) = 2Q1 dij6(r - r’)d(t - t’), 

( j i (r ,  t)jj(r’, t’)) = 2Q3 6ij6(r - r’)d(t - t’). 

(2.2a) 

(2.2c) 
(aij(r, t)alm(r’, t’)) = 2Q2 (6i16jm + Jimdjl)6(r - r’)d(t - t’), (2.2b) 
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The Qi are the strengths of the temperature, the velocity and the concentration 
fluctuations, respectively: 

The parameters involved here are the Boltzman constant kE,  the mean working 
temperature TO, the gravity force g, the thermal expansion coefficient a, the height 
of the fluid layer d, the kinematic viscosity v, the thermal diffusivity K ,  the fluid 
density po, the heat capacity cp, the mass diffusivity D, the expansion coefficient due 
to concentration variations p and the variation of the chemical potential p with the 
concentration c. The remaining parameters needed for defining the non-dimensional 
numbers L, P ,  y and R are the temperature difference AT and the Soret coefficient 
k T .  

As mentioned in the introduction, the investigation of the bifurcation behaviour 
can be simplified by introducing amplitude equations valid near the convection 
onset. This is particularly useful for the quasi-one-dimensional system discussed 
here, because a relatively simple equation involving only one spatial coordinate is 
sufficient. The derivation of this equation from the fundamental hydrodynamic 
equations was explained in detail by Graham (1974), who showed how to include the 
terms describing the thermal fluctuations for the case of a simple fluid with free-slip 
boundary conditions. Following this work, the analogous equations valid for binary 
fluid mixtures with realistic boundary conditions were recently derived by Schopf & 
Zimmermann (1993). In the case of a Hopf bifurcation leading to travelling-wave 
behaviour the following complex stochastic amplitude equation has to be used : 

TO(& - v,d,)Ao = ~ ( 1  + ic0)& + [;(1 + ic1)&lo - (a  + ic2)JAo12Ao + QfF(x, t). (2.4) 

Here E = ( R  - &)/& is the rescaled control parameter representing the relative 
distance from the convection onset, which occurs at &. The strength of the noise 
term Qf is determined by a combination of the Qi given in (2.3) and appearing in the 
basic equations (2.la-c), and also involves the linear eigenfunctions at onset (Schopf 
& Zimmermann 1993). The autocorelation function of the noise term is given by 

(F"(x, t)F(x', t')) = 6 ( x  - x')6(t - t') and (F(x, t)F(x' ,  t')) = 0. (2.5) 

With these results the strength of the noise term can now be calculated for arbitrary 
combinations of the fluid parameters. 

When applying (2.4) to convective states with very small amplitudes, which are 
expected to occur near the convection onset, the nonlinear term can be neglected in 
the first instance. In this case, the space-time correlation function of the noise-induced 
convection amplitude allows an analytical expression (see Rehberg et al. 1991b and 
Schopf & Rehberg 1992; the derivation is given by Schopf & Zimmermann 1993): 

fcor(Ao, Ax, At ) := (Ai(x,  t)Ao(x + Ax, t + At)) = elclAt/to 

Here the abbreviations 2; := IQ1/4zo[o(-~)f, xo := t O / ( - c ) f ,  to := T ~ / ( - E ) ,  tl := 
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FIGURE 1. The convection channel is cut out of a copper plate of dimensions 72 x 72 x 1.5 mm3. 
This sketch views it from the front side and, on the right, also from the narrow side. The system of 
coordinates as used in this paper is indicated in the lower left- and right-hand corners, respectively. 
The gravity force g acts downwards as shown by the arrow at the right-hand margin. The apparatus 
is explained in detail in the text. 

< O / V ~ ( - E ) ~  and El := 1 + icl have been introduced. The intensity A:, which includes 
only known quantities, can be rescaled into the intensity for the temperature correla- 
tion T 2  to be compared with the experimentally measured value. This will be done 
and discussed in detail in 8 5. 

3. Experimental setup 
3.1. Convection channel and thermal stability 

Figure 1 is a sketch of the experimental apparatus (also called convection cell) from 
the front side and, rotated by 90", also from the narrow side. The direction of the 
gravity force g is indicated by the arrow on the right-hand side, and the coordinate 
system is shown in the lower right- and left-hand corners. The apparatus is made 
from a square copper plate of lateral dimensions 72 mm and thickness 1.5 mm. The 
convection channel to contain the fluid is cut out of the copper plate in the middle 
part. It consists of a spatially homogeneous bulk region of length 18 and height 3 mm, 
thus allowing for about three pairs of convection rolls. Adjacent to this part, where 
the top and bottom boundaries are parallel, subcritical parabolic ramps smoothly 
reduce the height of the channel from 3 to 1 mm over a length of 26 mm on both 
sides. The convection channel is closed at the front and back sides by means of glass 
plates, which are glued onto the copper basis. Well inside the ramped part, a resistor 
used for generating heat pulses (see $4) is attached to the outer side of one of the 
glass plates. 

The top of the copper plate is in thermal contact with a water circuit of constant 
temperature (heat sink in figure 1). The convection channel is electrically heated from 
below by applying a constant voltage Uheat to a constantan wire wound around the 
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bottom of the copper plate (heater in figure 1). The resultant temperature difference 
between the upper and lower boundary of the fluid is measured via six thermocouples 
(copper-constantan) connected in series, which are attached to the copper plate near 
the convection channel (not shown in figure 1). To keep horizontal temperature 
gradients in the bulk part to a minimum, two slits of width 1 mm are cut into the 
copper above the channel. 

If not otherwise stated, a mixture of water and ethanol at a mean temperature of 
30°C consisting of 22.04 wt-% ethanol was used to fill the convection channel for 
our experiments. For this fluid the characteristic parameters are a Prandtl number of 
Pr = 15.5, a Lewis number of L = 0.009 and a separation ratio of y = -0.125 (from 
Kolodner, Williams & Moe 1988). 

The described convection apparatus has two special features. Firstly, complicated 
three-dimensional convection currents are avoided by using a narrow channel with 
a height-to-width ratio of 2 in the bulk regime. The fluid flow is confined to the 
(x, z)-plane, while the y-dependence can be approximated by a parabolic Poiseuille 
flow (see e.g. Frick & Clever 1980; Schopf 1992). Secondly, a convection pattern, 
which is well-developed inside the bulk part, becomes subcritical inside the ramps 
because of the decreasing height corresponding to a decreasing Rayleigh number. 
Hence, travelling waves will vanish when propagating into the ramps, a fact that 
drastically reduces the reflection from the left- and right-hand boundaries (for details 
see $4). 

At this point it is worth discussing the possibility of a mean flow inside the 
convection channel, which might be due to the ramped geometry. If there were 
only one ramp, for instance in the lower part of the left-hand side of the channel, a 
clockwise rotation would be induced. The curving of the upper part on the other hand 
should lead to a counter-clockwise rotation of the mean flow. In order to minimize 
such effects, the ramps were made mirror symmetric on top and bottom. Still, a 
large-scale flow pattern induced by this geometry cannot be excluded. Presumably, 
this would have the form of two counter-rotating rolls sitting on top of each other, 
with their lengthscale given by the extent of the ramp. In the experiments, however, 
neither this pattern nor any other mean flow was detected. Also the deterministic rolls 
created at supercritical values of the temperature difference did not appear unusual 
or asymmetric. Therefore, we believe that any possibly present mean flow is only a 
small correction to the linear equations describing the rolls. 

Great care has been taken to ensure the stability of the experimental parameters. 
The apparatus is fitted into a cylindrical aluminium box in such a way, that the top 
of the copper plate (heat sink in figure 1) is in thermal contact with the lid of the box, 
which is temperature regulated by the cooling water circuit. The aluminium cylinder is 
embedded in a box made from Styrofoam of thickness 2 cm, which itself is embedded 
in another Styrofoam box. The gap between these two boxes is also maintained 
at a constant temperature by the water circuit, so that the whole arrangement can 
be considered a very well insulated isothermal box. By introducing an additional 
regulation into the water circuit just before entering the aluminium box, a long-time 
stationarity of the temperature at the convection cell of better than f0.003"C is 
achieved. For electrically heating the convection channel from below, an adjustable 
regulated highly constant power supply is used. This and the temperature regulation 
for cooling are stored inside an isothermal box, in order to eliminate the variations 
which electronic parts usually experience with varying temperature. 

The results of these efforts are shown in figure 2, where the temperature of the 
lid of the aluminium box (a) ,  the voltage for heating from below (b) ,  and the 
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FIGURE 2. Long-time stability of the important externally controlled parameters applied to the 
convection cell. Shown as functions of time for about four days are (a )  the temperature of the lid of 
the aluminium box, ( b )  the voltage used for heating from below, and (c) the temperature difference 
between the top and bottom boundaries of the fluid. 

temperature difference applied to the fluid ( c )  are given as functions of time for 
about four days. The lid temperature Tlid = (24.8038 f 0.0026)"C is constant to 
within 3 mK. The heating voltage Uhear = (7.50012 & 0.00002) V varies only in the 
last digit of the multimeter and can be considered as perfectly constant for our 
purposes. The resulting temperature difference AT = (12.9175 +0.0018) K is constant 
to within 2 mK, corresponding to a relative stability better than 0.014 %. Here 
the problem of measuring very small voltages arises, since the thermocouples yield 
Uther = (2-3) x V, which is of the same order of magnitude as the accuracy 
of the multimeter. It can therefore be assumed that the actual variation of the 
temperature difference is even smaller, which is also suggested by the stability of the 
lid temperature and the heating voltage. The precision of this measurement could in 
principle be improved by using a larger number of thermocouples, but this approach 
is made difficult by the restricted space on the copper plate. 

3.2. Optical setup and shadowgraph method 
The optical setup is schematically sketched in figure 3. A white point light source 
is generated by putting a pinhole in front of a halogen lamp. The light is made 
weakly convergent by means of a (chromatically corrected) lens of focal length 1 m 
and the resulting light beam illuminates the (x, 2)-plane of the convectioc channel. 
The images are taken by a black-and-white CCDxamera which focuses about 2 m 
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FIGURE 3. Schematical sketch of the optical setup. White light coming from a halogen lamp 
is made weakly convergent by means of a lens and illuminates the convection channel from the 
front side (x, z-plane). The resulting images taken by the CCD-camera are further processed using 
frame-grabbing facilities implemented in a PC/AT-computer (not shown here). 

behind the apparatus. In order to minimize mechanical disturbances, the whole setup 
sits on an optical table which consists of a granite plate of thickness 15 cm lying on 
two large Styrofoam blocks. A black-painted wooden shell covers the setup to ensure 
optical insulation from the surroundings. 

Flow visualization of the convection patterns is achieved by the well-known shad- 
owgraph technique (see e.g. Busse & Whitehead 1971, 1974). This inexpensive, 
easy-to-handle but extremely sensitive method has proven very successful for appli- 
cation in fluid flows involving thermal gradients (see e.g. Heutmaker, Fraenkel & 
Gollub 1985; Steinberg, Ahlers & Cannell 1985; Kolodner et al. 1986b; Croquette & 
Williams 1989). The principles are rather simple: the convection rolls consisting of 
warm ascending and cold descending fluid lead to a spatially modulated temperature 
gradient, which manifests itself optically as a spatial modulation of the refractive 
index of the fluid and hence can be made visible. The method is explained in detail 
by Rasenat et al. (1989). For our setup the shadowgraph image is the result of a 
spatial integration over the entire width of 1.5 mm of the convection channel, which 
makes the method most appropriate for observing the expected quasi-one-dimensional 
structures. By using a frame-grabber board, the shadowgraph image taken by the 
CCD-camera is digitized into an array of 512 x 512 pixels of 8-bit grey-scale values, 
which is stored and further processed by a PC/AT-computer. 

In this experiment we are mainly interested in very small convection amplitudes 
leading to very small variations in grey scale. Furthermore, our observation point is 
located far away from the caustics produced by the shadowgraph method as discussed 
by Rasenat et al. (1989). Since in this case the technique always works inside its linear 
regime, the general full nonlinear calculation performed by Rasenat et al. (1989) is 
not necessary here and can be replaced by the following simplified estimation. 

Consider the setup sketched in figure 4, where a transparent object of thickness I is 
illuminated by a parallel light beam. The variation of the refractive index n(x)  inside 
the object is assumed to focus the light to a point at a distance f behind the object. 
With s(x) being the length of a possible light path from the object to the focal point 
and L(x) = 1 n ( x )  being the length of the optical light path inside the object, Fermat’s 
principle yields s(x) + L(x) = const. Besides this, s(x) is also given by s2 = f 2  + x2 
which can be approximated by s(x) z f + x 2 / 2 f ,  as long as the lateral dimensions 
of the object are small compared to the focal length, i.e. x e f .  Combining the latter 
expression with Fermat’s principle, we find for the focal length 

(3.1) 

Let the object of figure 4 now be a pair of convection rolls. In a vicinity of the 
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FIGURE 4. Principles of the shadowgraph technique as used in our experiment. The refractive index 
n(x) of a transparent object is assumed to vary in such a way that an incoming parallel light beam 
is focused to a point at a distance f behind the object. s(x) is the length of a possible light path 
from the object to the focal point and xo is the lateral dimension of the object with xo<f. The light 
intensity is measured at a distance yo behind the object. The system of coordinates is indicated at 
the left-hand side. See text for details of the calculation. 

descending fluid, this can be treated locally as a lens with focal length fc.  A purely 
geometrical consideration yields the relative change in light intensity at a distance 
yo behind the object as (AIII) = yo/(fc - yo), where I is the mean intensity of the 
incoming light beam. Hence, the focal length of the convection roll is given by 

1 =-(-)( l+T) 1 A I  A I  -1 W , ( r > .  1 AI fc Yo I 
(3.2) 

The approximation in the last step is justified by the experimentally measured values 

The result (3.2) holds for illumination with parallel light, whereas in our experiment 
weakly convergent light was used instead. Without convection (i.e. no lateral varia- 
tions of the refractive index) this leads to a focus at a distance f o  behind the apparatus, 
while in the presence of convection the focal length is given by fg  with f;' = f;' +f;'. 
Again, a geometrical consideration yields (hl/I) = (fo -fg)yO/(fg - yo)fo with I now 
being the mean intensity at the measurement point yo. The focal length of the 
convection roll is then given by 

of (&/I) W (10-4-10-2). 

Interpreting this as the value given by (3.1), the dependence of the refractive index 
on convection can be expressed by the measured change of the relative light intensity 
via 

Near the convection onset the refractive index inside the fluid varies periodically 
with the critical wavenumber k, around its mean value no: nc(x) = no + An(x) with 
An(x) = A sinkcx. Hence, (d2nc/dx2) = -k: An(x) and with k,  = 2n/& we eventually 
find 

(d2nc/dx2) = -Nfo - Yo)/(foYo)l(~~/~)exp. 

Inserting the experimental values yo w 2 m, f o  w 8 m, A,, w 5.3 mm and I = 1.5 mm, 
the variation of the refractive index due to convection is given by the measured 
change of the relative light intensity through 

An(x) ~0.00018 - . i3,, (3.5) 

In binary fluid mixtures, this is not only caused by the temperature distribution 
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inside the fluid, but also by the concentration distribution: An(x) = (An/AT)  AT(x) + 
(An/Ac)Ac(x). The variation of the refractive index with temperature can be found 
either by applying the Lorentz-Lorenz formula (see for example Lusty & Dunn 1987) 
or by interpreting direct measurements for the relevant temperature range (Kolodner 
et al. 1988). Both methods yield about the same result of (An lAT)  x. 2.05 x K-'. 
The variation of the refractive index with concentration has also been measured by 
Kolodner et al. (1988), yielding (Anlac) m 0.063 for our mixture. The temperature 
and the concentration fields, which are coupled by the fundamental hydrodynamic 
equations, can be described by the linear solutions at threshold for the extremely 
small amplitudes that we are interested in. When these fields are calculated as the 
integrals over the entire vertical extent of the channel as in our experiment (see § 3.3), 
the ratio between the temperature and the concentration is AT(x)/Ac(x) M 0.37 
in the dimensionless units used by Schopf & Zimmermann (1993). After scaling 
this back to the relevant experimental units and taking into account the values of 
(An/AT) and (An/Ac) from above, the variation of the refractive index turns out 
to be about 73% dependent on the temperature field and about 27% dependent 
on the concentration field. Since we eventually want to compare our results with 
the theoretical values obtained for the temperature variation (see § 5 ) ,  we need to 
consider only the part given by the temperature field. Equation (3.5) yields, together 
with (An lAT)  = 2.05 x lop4 K-I, for the relevant 73% (in Kelvin) 

AT(x) m 0.64( $) K. 
exP 

Thus, the relative intensity variations taken from the shadowgraph images can be 
used as a quantitative measure of the lateral temperature variations due to convection. 
The result (3.6), however, can only be applied to very small intensity variations, as 
caused e.g. by the convective states discussed in 6 5, where the shadowgraph technique 
behaves linearly. For fully developed, highly nonlinear convection, the method can in 
our case only be interpreted for qualitative estimates. 

3.3. Measurement method and stability diagram 
Through the frame-grabbing procedures we get from the shadowgraph image a two- 
dimensional grey-scale map I (x, z )  governing the entire convection channel. Since 
we are only interested in the x-dependence of the convective structures, we can 
integrate over the vertical dimension by adding together all horizontal lines to one 
line Ic(x) = J I ( x ,  z )  dz. This procedure not only increases the contrast of the image, 
but we also eliminate a mean vertical displacement of the convection channel caused 
by the fact that the vertical gradient of the refractive index varies with the applied 
temperature difference. In order to minimize optical inhomogeneities which may be 
due to uneven illumination or to other irregularities of the optical setup, the lines 
Zc(x) are divided by a reference line Io(x) taken in a state without convection. The 
resulting lines Ipro(x) = Zc(x)/Io(x), called profile lines in the following, are the main 
basis for analysing the data. One individual profile line can be quantified by a single 
number, the r.m.s.-value 

where Ipro is the mean value of the line. The r.m.s.-value I,,, and especially changes 
of this value can be used to some extent to analyse the convection behaviour. In a 
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FIGURE 5. Stability diagram as measured for our working fluid. The r.m.s.-intensity I,,, of the 
respective profile lines is shown as a function of the applied temperature difference AT with open 
squares corresponding to increasing and closed triangles to decreasing AT. The onset of nonlinear 
convection for ATc = 10.61 K is clearly visible. When reducing the temperature difference, 
convection does not vanish until the lower value of AT, = 9.61 K is reached, which is caused 
by the subcritical nature of the bifurcation leading to the observed hysteresis. The small arrow 
at AT? = 10.03 K indicates the onset of the convective instability, where the growth rate of a 
homogeneous disturbance is zero ( E  = 0). The crosses inside the stability diagram correspond to 
stable localized travelling waves (confined states). 

state without convection, Ir,, should be zero so that its rise indicates the onset of 
convection. 

Figure 5 shows the experimentally measured stability diagram for our working fluid. 
Here, i,.,, is plotted versus the applied temperature difference. From a quiescent state 
without convection, the temperature difference was increased stepwise (open squares 
in figure 5) with an appropriate waiting time allowing a new steady state to establish 
after each step. The onset of nonlinear convection at AT, = 10.61 K ( E ,  = 0.058) can 
clearly be seen. Owing to the subcritical nature of the bifurcation in this system, there 
exists no stable, weakly nonlinear state of small-amplitude convection, but rather the 
system develops via a transient stage into a state of strongly nonlinear convection. 
When reducing the temperature difference (closed triangles in figure 5) ,  convection 
persists for values less than ATc, leading to the expected hysteresis until the value 
AT, = 9.61 K ( E ,  = -0.042) is reached, where it abruptly ends. As already mentioned, 
the shadowgraph method behaves nonlinearly for the convective states observed here, 
hence no simple connection between I,,, and the temperature variation inside the 
fluid can - be given. Therefore the units on the vertical axis of figure 5 are omitted; 
however, I,.,, = 0 on the bottom line. 

The arrow at AT? = 10.03 K indicates the onset of the convective instability. Here 
the growth rate of a homogeneous disturbance is zero ( E  = 0) and becomes positive 
for AT > AT?. The character of this instability and the meaning of the measured 
values ATc and AT? will be discussed in §4. In the subcritical range AT < ATc we 
find linear propagating waves of extremely small amplitude, which will be discussed 
in detail in $5. 

The onset of nonlinear convection via transient behaviour is very similar to that 
observed in other experiments in this system (see for example Kolodner et a/. 1986a; 
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Lhost & Platten 1988). Upon reaching the critical temperature difference AT,,  linear 
waves travelling with the Hopf frequency can be seen initially. The amplitude then 
rises exponentially until a saturation value is achieved, leaving a state of nonlinear 
convection with reduced frequency. The frequency will decrease even more and finally 
drop to zero on the upper branch of figure 5. On this branch, no travelling waves exist 
for any of the applied temperature differences; here convection always has the form 
of stationary rolls. This is in contrast to experiments in two-dimensionally extended 
systems, where at least in some range nonlinear travelling waves are found (Walden 
et al. 1985; Lhost & Platten 1988; Steinberg et al. 1989; Bensimon et al. 1990). This 
is a special feature of our narrow channel, which obviously forces the stationarity of 
the rolls. One possible explanation is the relatively large thermal diffusivity of the 
glass plates, which carry away a considerable amount of heat and so decrease the 
effective Lewis number. In the nonlinear state, the mixture therefore behaves like a 
usual, one-component fluid, with the Soret effect acting too slowly to take care of 
the demixing. This is of course only a speculation, and a further investigation of this 
point would be very interesting. 

The fairly long periods of the travelling waves (> 25 s) allow a very accurate 
measurement of the critical frequency from the linear states (see also 0 5). In this way 
we get O, w 0.22 Hz. The measurement of the wavelength of the convection rolls, 
however, is complicated by the shortness of the convection channel (only about 6 
rolls fit into the bulk part) and also by the ramps, which cause a weak x-dependence 
of the wavelength. Through replacing the convection apparatus by a mm-scale under 
otherwise equal conditions, we found inside the bulk regime a value of 2, w 5.3 mm 
corresponding to a non-dimensional wavenumber of k, w 3.56. 

3.4. Stable confined states 
The crosses in the stability diagram of figure 5 correspond to stable localized travelling 
waves, where convection takes place only in one part of the channel, while the 
remaining fluid is quiescent. These states are the same as the 'fast confined states' 
found by Bensimon et al. (1990). We find for the range of their existence w 0.06, 
which is considerably larger than the value of AzCs w 0.015 measured by Bensimon 
et al. (1990) in an annular geometry (note that the value of Ar = 0.023 given by 
those authors is scaled with respect to the onset of instability in a pure fluid).? 
Upon increasing the temperature difference above A T  = 10.28 K (right-most cross in 
figure 5) ,  the state will extend to fill the whole channel with rolls, while decreasing it 
below A T  = 9.67 K (left-most cross in figure 5) will force the convection to vanish. 

Some more results were obtained using a mixture of 17 wt-% ethanol in water at a 
mean temperature of 30 "C. Following Kolodner et al. (1988), this mixture corresponds 
to L = 0.0083, Pr = 12.81 and y = -0.183. We found ATs = 9.0 K, AT? = 9.8 K 
and AT,  = 10.46 K, and o, = 0.27 Hz for the Hopf frequency. Confined states could 
be observed for temperature differences between A T  = 9.17 and 9.83 K corresponding 
to a range of existence of Acts w 0.067. For the frequencies of the localized travelling 
waves we measured o,, = 0.08 Hz w 0.30, at A T  = 9.17 K, o,, = 0.067 Hz w 0.250, 
at A T  = 9.43 K and o,, = 0.047 Hz w 0.170, at A T  = 9.83 K, which are obviously 
different from the linear result. The fact that the frequency decreases with increasing 

t Recent experiments performed by Kolodner (1993) in an extremely uniform annular convection 
cell showed that the range of existence of a confined state with a given width is in fact zero. In 
another experiment using a fluid with y = -0.127, stable narrow confined states (pulses) have been 
observed over a range of A& = 0.034 (private communication by P. Kolodner). 
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temperature difference is in agreement with experimental results obtained by Steinberg 
et al. (1989) and Bensimon et al. (1990). 

4. Convective instability and reflection behaviour 
4.1. Convective and absolute instability 

In systems showing propagating modes, the distinction between convective and ab- 
solute instability becomes important (see e.g. Landau & Lifshitz 1959; Akhiezer & 
Polovin 1971; Huerre & Monkewitz 1985). These concepts are well-known from 
Poiseuille flow through a pipe, from plasma instabilities, and from applications in 
other open-flow systems (see e.g. Landau & Lifshitz 1959; Briggs 1964; Deissler 1985). 
They were first introduced to binary-fluid convection in an attempt to explain the still 
not fully understood confined states (Cross 1986, 1988). The idea can be illustrated 
qualitatively by following the development of a localized disturbance in an otherwise 
quiescent state. Owing to the non-vanishing group velocity arising in the systems of 
interest this perturbation will be carried through the system, in the course of which it 
can undergo three basic types of qualitatively different modifications. If the value of 
the control parameter is such that the amplitude of the disturbance decreases while 
being carried away, it will eventually vanish and the system is thus stable. If, on the 
other hand, the amplitude increases as the disturbance moves on but nevertheless will 
vanish for every fixed position when this position has been passed, the system is called 
convectively unstable. Finally, for a sufficiently high value of the control parameter 
each disturbance can grow so fast that despite being carried away it will extend over 
the entire system, corresponding to a situation of absolute instability. 

A quantitative understanding of these concepts can be gained most simply by 
analysing the amplitude equation for example for the amplitude A of a left-travelling 
wave (see Deissler 1985): 

zo(d, - v,~,)A = &(I + ico)A + <:(I + icl)d;A - (a  + ~ ~ ~ ) I A I ~ A .  (4.1) 

When looking for the linear stability of the solution A = 0 against homogeneous 
disturbances of the form uexp(i(Qx + at)), it is apparent that the amplitude u of 
the disturbance will decrease exponentially for E < 0, determining the linear stability 
boundary as I ,  = 0. When, however, investigating the stability against a localized 
perturbation, a distinction analogous to the qualitative behaviour discussed above 
can be found, hence showing that an infinitely extended system is (Deissler 1985) 

stable for 
convectively unstable for 

E < E C , O ~  = 0, 
E? < E < F : ~ ~ ,  

absolutely unstable for I > ~z~~ 

(4 .2~)  
(4.2b) 

(4.2~) 

A stability analysis of the fundamental hydrodynamic equations, as performed for the 
case of binary fluid mixtures e.g. by Legros et al. (1975), Chock & Li (1975), Knobloch 
& Moore (1988), Cross & Kim (1988) or Schopf & Zimmermann (1989), usually 
applies to homogeneous disturbances and thus yields the onset of the convective 
instability. The situation is slightly more complicated for finite systems where the 
solutions of interest have to be constructed from the respective eigenfunctions. It 
turns out that the boundaries have a weakly stabilizing influence, shifting the absolute 
instability by an amount of the order 1-2 from E : ~ ~  to some &,absfin,  when l is the length 
of the system (Deissler 1985). 
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In an experiment, the actual onset of the instability depends on the geometry of the 
apparatus as well as on the nature of the disturbances. When dealing with permanently 
arising, stochastic fluctuations, which may for example be due to thermal noise and 
are therefore always present, the difference between the onset of the convective 
instability and the onset of the absolute instability will not necessarily manifest 
itself in an infinitely extended system. The same is true for an annular geometry, 
where additionally each single perturbation will always be carried back to its origin. 
Obviously the full range of the convective instability 0 < E < ~ : ~ ~ , f ~ ~  can only be 
investigated in a finite system showing no reflections from the sidewalls. 

4.2. The injuence of the rejection coeficient 
In practice, reflection of the disturbances from the lateral boundaries will always lower 
the onset of nonlinear convection, thus occurring at some ~ y f  < ~ : ~ ~ , f ~ ~  before the 
absolute instability point of the finite system under consideration is reached. In this 
case the full calculation is more complicated because the finite system together with 
the boundary conditions has to be considered. However, for a not too small reflection 
coefficient r and neglecting diffusion and dispersion effects which will decrease ~:f, 

one can estimate it simply from the balance between the exponential growth during 
the propagation across the channel and the loss due to reflection at the boundaries 
(Cross 1986, 1988): 

with 1 being the system length. Under normal experimental conditions (1 = 20 and 
r = 0.4, see e.g. Cross 1986; Kolodner et al. 1987) together with the relevant coefficients 
corresponding to our mixture (ug = 2.3, TO = 0.104, ;": = 0.147 and c1 = 0.09, see 
Cross & Kim 1988; Schopf & Zimmermann 1989) this yields &:f = 0.01, while from 
(4.2~) one finds &,abs = 0.1. Hence the absolute instability is usually out of reach 
and in most experiments the onset of this reflection-induced instability is observed. 
This instability can be shifted towards higher values of the control parameter by for 
example decreasing the reflection coefficient as can be seen from (4.3). This is the 
reason for introducing into our convection channel the subcritical ramps shown in 
figure 1, which decrease the amplitude of waves travelling into these ramps and so 
effectively prevent reflection from the sidewalls. We find AT? = 10.03 K for the 
onset of the convective instability (see $ 4.3), while the onset of nonlinear convection 
as discussed in $3.3 occurring at AT, =: ATFf  = 10.61 K now has to be interpreted 
as the onset of convection due to reflection. The value of 

so obtained is considerably larger than the value of 0.01 discussed above for conven- 
tional convection cells. 

For demonstration purposes, but especially for measuring the actual value of the 
reflection coeffient and of AT? (see Q4.3), the resistor shown in figure 1 inside one 
of the ramps is used. When applying a voltage for a short duration of time (a voltage 
pulse) to this resistor, inside the fluid a localized perturbation in the form of a heat 
pulse is generated, which is forced by the group velocity to travel through the system. 
Figure 6(a) shows in the form of a space-time plot the response of our system to one 
such disturbance. Profile lines taken at consecutive times for a duration of 12 minutes 
are drawn one above the preceding one. The resistor itself is located at x = 7d and is 
not shown in figure 6(a). The temperature difference of AT = 10.34 K corresponds 
to a positive value of E = 0.03 in the bulk regime, The amplitude of the travelling 
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FIGURE 6. Space-time plot to demonstrate the reflection behaviour of the convection channel. For 
this sort of representation several profile lines taken consecutively in time are plotted one above 
the preceding one (here for a duration of 12 minutes altogether). A voltage pulse applied to the 
resistor shown in figure 1 generates a localized disturbance which penetrates through the channel. 
The measurements correspond to convectively but not absolutely unstable situations ( E  = 0.03). The 
resistor for generating the heat pulse is located outside the plotted area on the right-hand on ( a )  
and on the left-hand side on (b) .  (a)  Convection cell used in our experiments as shown in figure 1 
and explained in detail in the text with the homogeneous region extending between x = f3d. A very 
weak reflected wave can be seen in the upper right part of the picture. ( b )  Rectangular convection 
cell similar to the one described in figure 1, but without ramps and instead the bulk part extended 
over the entire lateral dimension. Now the wave reflected from the right-hand boundary can clearly 
be recognized. 

perturbation first decreases until the supercritical part of the channel is reached. Then 
it increases owing to the convectively unstable nature of the instability in the inner 
part of the cell before decreasing again inside the opposite ramp to eventually vanish 
at x w -9d. Note the spreading in time which is due to diffusion and dispersion. Only 
a very weak reflected wave can be recognized in the upper right part of figure 6(a).  

For comparison, figure 6(b) shows the result of the analogous experiment performed 
in a rectangular convection channel. This apparatus has no ramps: instead the upper 
and lower boundaries of the fluid are parallel over the entire length of the channel. 
The temperature difference again corresponds to a value of E = 0.03. This large value 
without forcing the onset of nonlinear convection could only be achieved because 
an air bubble on the left-hand boundary prevents reflection there. The resistor for 
generating the heat pulses is located at x = -10d, outside the plotted region. Again, 
owing to the convective instability, the amplitude of the perturbation increases while 
travelling, and also the temporal broadening of the signal is present. Now, however, 
the wave reflected from the right-hand boundary is clearly evident in the upper left 
part of the picture. 
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4.3. Reflection coeficient and the onset of the convective instability 

Rather than using the single perturbations shown in figure 6, for quantitative purposes 
it is more useful to generate heat pulses periodically in time. When stimulating the 
system with its Hopf frequency (one voltage pulse every 28.6 s), a periodic convection 
state will be achieved after some starting time with the entire accessible information 
contained in one period, In order to improve the signal-to-noise ratio, the profile lines 
obtained from many such periods (usually 300) are added together with the correct 
phase, leading to a time series of profile lines covering exactly one period and giving 
the intensity I ( x , t )  as a function of space and time. Now for each spatial location 
x, the signal Ix ( t )  can be transformed into Fourier space, thus yielding the strength 
P 2  of the mode with the stimulation period (which in principle is the only one 
occurring in the temporal spectrum) as a function of space. In figure 7(a), functions 
P2(x )  measured in this way are shown for four different temperature differences and 
otherwise equal conditions. The lines correspond from top to bottom to AT = 10.60, 
10.54, 10.47 and 10.03 K. The resistor used for generating the heat pulses is located 
at x = 7d causing the almost identical peaks there. Because of the ramp there is 
almost no propagation to the right, while the propagation to the left leads to different 
behaviours dependent on the respective temperature difference. After reaching a 
maximum inside the opposite ramp at x rn -54 the strength P 2  decreases strongly. 
The small periodic variations visible in the middle part contain the information about 
the reflected wave. 

A theoretical expression for P 2 ( x ) ,  valid for not too large convection amplitudes, 
can be modelled from the linear part of the amplitude equation (4.1) by superposing 
the left- and right-travelling waves and reintroducing the fast variations with k, and 
w, (cp is a phase shift between the two waves; A. and Bo are fixed by the selection of 
the coordinate system): 

251 

For our convection cell this result applies only inside the bulk regime between 
x = +3d. By fitting this expression to the experimental data measured at various 
temperature differences, the values of Ao, Bo, E / Z ) ~ Z O  and k = k, - ( C O E / V ~ Z O )  can 
be extracted as functions of E. An example for such a fit is shown by the line in 
figure 7(b), where the open circles represent the measurement points for a temperature 
difference of AT = 10.56 K. 

The results of those fits allow an accurate determination of the onset of the 
convective instability at AT? by interpolating to that value of AT where E is zero. 
In that case, (4.5) reduces to P2(x,  E = 0) = A: + B,2 + 2AoBo cos(2k, + cp), which is 
constant except for the periodic variation with 21'2,. From this procedure we obtain 
the value of AT? = 10.03 K (lowest line in figure 7a). Now the corresponding values 
of E can be calculated for all temperature differences AT.  

The values of A. and Bo serve to deduce the reflection coefficient r.  Because of 
the ramps, however, our convection channel has no well-defined lateral boundaries 
so that it is not quite clear where exactly the waves are reflected. Assuming this to 
occur at x = x,, the reflection coefficient would be 

(4.6) 

If r is independent of E, all functions r ( x )  := (Bo/Ao)exp(2~x/vgzo) calculated for 
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FIGURE 7. Analysis of the measurements using temporally periodic heat pulses to stimulate the 
system with its Hopf frequency w,. For this purpose, every 28.6 s a short voltage pulse is applied to 
the resistor located at x = 7 d  and the profile lines are recorded for exactly one period. (a) Strength 
P 2  of the mode showing the stimulation frequency as a function of the lateral position. From top 
to bottom the lines correspond to decreasing temperature differences: AT = 10.60, 10.54, 10.47, and 
10.03 K. (b)  Example of a fit of the theoretical expression (4.5) for P 2  to the measurements shown 
in (a). The open circles are the measurement points and the line is the function fitted inside the 
bulk regime between x = +3d. The temperature difference is AT = 10.56 K.  

different E should intersect in one point, namely at x,. Five such curves Y(X) are drawn 
in figure 8(a) indeed showing the expected behaviour. From this plot the location 
of the reflection centre x, and the actual value of the reflection coefficient r can be 
determined as 

r ~ 0 . 0 0 6  and x, = -6d. (4.7) 
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FIGURE 8. Results obtained from the periodic heat pulse measurements through fits analogous to 
that shown in figure 7(b). (a) The function r (x )  = (Bo/Ao)exp(2sx/o,zo) is plotted for different 
values of the temperature difference. The lines intersect at the centre of reflection at x w -6d 
determining the reflection coefficient as r = 0.006. ( b )  The wavenumber as a function of E 

extracted from the measurements (open circles) can be modelled by the straight line obeying the 
law k(s)  = k, - ( C O E / U ~ Z O ) .  This yields a critical wavenumber of k, = 3.56 and c0/ugzo = 8.46. 

At about 0.6 %, the reflection ability of our cell is considerably smaller than the usual 
values of 3 M O  YO (Cross 1986; Kolodner et al. 1987). 

The open circles shown in figure 8(b) represent the wavenumbers obtained from 
these measurements for different temperature differences, and the straight line is a 
fit of the law k = k, - ( C O S / U ~ Z O )  expected from (4.9, which obviously describes the 

9 FLM 271 
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data quite well. This procedure determines the critical wavenumber as k,  = 3.56 and 
furthermore gives cO/vgzo = 8.46. From the results given in this section another two 
coefficients of the amplitude equation (4.1) can be calculated yielding vgzo = 0.16 and 
co = 1.35. Now the theoretical expression (4.3) for ~ : , ~ f  can also be tested and we find 
~',"f = 0.068, which is in good agreement with the measured value of &;;Lp = 0.06, 
bearing in mind that (4.3) was an upper estimate. 

5. Noise-induced convection structures 
5.1. Convection in the subcritical regime 

The amplification of travelling-wave states by the convective instability, as explained 
in detail in the last section, requires a more careful and quantitative investigation of 
the lower branch of figure 5 for AT < AT,'"f. Here the system is not in a quiescent 
state without convection activity, as may be assumed in the first instance; instead, 
spontaneously occurring structures of extremely small amplitudes can be observed. 
Examples of such convective states are shown in figure 9 in the form of space-time 
plots. Here, the activity inside the spatial regime between x = k8d of the convection 
channel is represented for the duration of one hour. The temperature difference is 
AT = 10.42 K ( E  = 0.039) for the experiment shown in figure 9(a)  and AT = 10.51 K 
(E = 0.048) in figure 9(b). For convenience the direction of the travelling waves is 
indicated by the arrows in the lower part of the pictures. During the times with 
higher convective activity in particular ('islands' of convection structures), the waves 
travelling to the right in the right part of the cell and to the left in the left part are 
quite distinct. Again the decrease of the amplitude inside the ramps forcing the waves 
to disappear is obvious. Rather than representing some part of a transient, these 
states are stable and can in principle be observed for an arbitrarily long time. Their 
amplitudes are so small that they could not be resolved against zero on the scale of 
figure 5. 

At first sight the waves shown in figure 9 seem to originate in the middle of 
the convection channel, to travel subsequently towards the left- and right-hand 
boundaries. A more precise investigation, however, indicates that a wave observed 
for example in the right-hand part travelling to the right has made its way through 
the entire channel, but in the left-hand part it is usually hidden by left-travelling 
waves. This is caused by the amplification of the waves during their travel due 
to the convective nature of the instability, resulting in the structures being much 
better detected in their destination part of the cell. In fact, the high quality of the 
quantitative analysis presented in 50 5.2 and 5.3 is only made possible by this intrinsic 
amplification mechanism. From figure 9 some alterations of the convection behaviour 
with varying temperature difference can be recognized at least qualitatively. At the 
higher temperature difference, the 'islands' of travelling-wave activity persist for a 
longer time, so obviously the correlation time increases. Also the mean amplitude 
of the structures increases with increasing temperature difference leading to a better 
contrast against the background. 

Each of the profile lines shown in figure 9 is obtained by adding together the 
intensities of all the lines covering the vertical dimension of the convection channel 
(about 70 lines). Typical values for the variations of the light intensities (in units of 
grey scales of our camera) are Al = 1.5 for figure 9(a)  and AI = 4.8 for figure 9(b)  
at an average intensity of I w 2500 for the incoming light beam. The smallest 
still measurable convection structures observed at E = -0.02 yield Al w 0.5 (these 
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FIGURE 9. Space-time plots, analogous to those described in figure 6, of the noise-induced convection 
structures. Linear waves with very small amplitudes can be recognized travelling to the right in the 
right-hand part of the channel and to the left in the left-hand part to eventually vanish inside the 
ramps. The direction of propagation is indicated by the arrows in the lower part of the pictures. The 
patches of higher convective activity occur randomly in time. Their duration and thus correlation 
and also their mean amplitude increase with increasing temperature difference. These states are 
discussed in detail in the text. (a)  AT = 10.42 K ( E  = 0.039), ( b )  AT = 10.51 K ( E  = 0.048). 

structures could no longer be made visible in the form of a plot analogous to figure 9). 
Hence when taking only one profile line for example in the middle of the convection 
channel, information about the convection patterns was hidden in 0.01 to 0.1 of one 
grey-scale level of the CCD-camera. To observe and analyse these structures, various 
digital methods for improving the signal-to-noise ratio must be used, the simplest one 
being integration over the entire vertical extent of the cell. Moreover, six such profile 
lines were added together for each measurement point in time rather than just one. 

9-2 
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For presenting the images in the form of the plots shown in figure 9, the data have 
been additionally filtered spatially and temporally. 

5.2. Quantitative analysis of the convection structures 
As mentioned earlier only three pairs of convection rolls fit into the bulk part, leading 
to a poor spatial resolution. Therefore the quantitative analysis of the noise-induced 
structures is performed exclusively in the time regime. Here, on the other hand, the 
measurements are very precise, because the structures can in principle be observed 
for an arbitrarily long time. Figure 10 shows the observed light intensity as a function 
of time for 8192 s at one spatial location on the right-hand side of the bulk part of 
the channel (x = 3d, lower half) and at one location on the left-hand side (x = -34 
upper half). The applied temperature difference is AT = 10.54 K corresponding 
to E = 0.051. The fast variation of the waves with the Hopf frequency can no 
longer be resolved on this scale, so that figure 10 is a representation of the envelope 
of ‘islands’ of convection structures as shown in figure 9. These ‘islands’ showing 
higher convection activity arise randomly with variable length, but nevertheless they 
obviously have a well-defined mean duration, which grows longer with increasing 
temperature difference. The behaviour in one half of the channel seems not to be 
coupled to that in the other half. The scenario is qualitatively the same over the entire 
range of existence of these states and also remains stationary for long observation 
times. The measurement points were chosen to be at the boundaries of the bulk 
regime at x = f3d, because here the maximal amplification of the waves due to the 
convective instability can be expected. 

An appropriate tool for investigating such stochastic structures is the temporal 
correlation function (here for the measured light intensity) given by 

f o , ( I , A t )  = iT I ( t ) I ( t  + At) dt.  ( 5 . 1 ~ )  

Usually more convenient for the analysis of experimental data, however, is the 
structure function (see e.g. Schulz-DuBois & Rehberg 1981) 

f S f u ( I , A t )  = - ( I ( t )  - I ( t  + At))’ dt. .r LT (5.lb) 

If a statistically stationary process is considered and the observation time is ‘long 
enough’, the latter is related to the correlation function via f s fU( I ,A t )  = const. - 
2fc0,(I,At), so that the correlation function can easily be determined from the 
structure function. 

For the quantitative analysis of the observed convection structures, time series 
such as shown in figure 9 were taken for various temperature differences between 
AT, = 9.61 K and AT,‘“f = 10.61 K. Each measurement consists of 2048 profile 
lines, one taken every 2 s. Each single profile line represents a sum of six lines, 
which are again all integrated over the whole vertical dimension of the channel. For 
further improvement of the signal-to-noise ratio, the structure function was not only 
calculated for just one location, but for 32 neighbouring pixels on the right-hand 
side of the channel and for 32 on the left-hand side, which are eventually all added 
together. The temporal correlation functions obtained in this way are shown by the 
closed squares in figure 11 for three different temperature differences (the lines are 
fits of (5.2) and are discussed in $5.3). The correlation functions are normalized 
to their respective value at At = 0 and the temperature difference is from top to 
bottom AT = 10.58 K ( E  = 0.055), AT = 10.24 K ( E  = 0.021) and AT = 10.06 K 



The influence oj-thermal noise on the onset of binary-Jluid convection 257 
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FIGURE 10. Envelope of noise-induced convection structures, similar to those plotted in figure 9, 
for AT = 10.54 K ( E  = 0.051). The light intensity taken from the shadowgraph image is shown 
as a function of time for 8192 s for one location at the left-hand (x = - 3 4  upper part) and for 
one location at the right-hand ( x  = +3d ,  lower part) boundary of the bulk regime, respectively. 
The randomly occurring patches of higher convective activity as discussed for figure 9 are well 
pronounced. The fast variation with the Hopf frequency cannot be resolved on this scale. 

( E  = 0.003). The Hopf frequency of the travelling waves can clearly be seen, especially 
for the upper two measurements. When decreasing the temperature difference, the 
correlation function becomes noisier and decays faster, but some useful information 
can be extracted even from figure ll(c). 

5.3. Comparison with the theory 

A theory which takes into account the influence of thermal noise on the convection 
onset in a spatially extended system was recently presented for the case of binary fluid 
mixtures with realistic boundary conditions by Schopf & Zimmermann (1993) follow- 
ing the classic work of Graham (1974), which was valid for normal one-component 
fluids between free-slip boundaries. The idea and results of this theory were briefly 
outlined and summarized in 32. This theory should describe our measurements if the 
observed convection structures are indeed noise-induced, although the noise need not 
necessarily be thermal as long as the S-correlations given in (2.2a-c) are correct. Since 
we are dealing with very small convection amplitudes, the spatio-temporal correlation 
function (2.6), which could be deduced from the amplitude equation (2.4) by neglect- 
ing the nonlinear terms, is considered to be sufficient in our case. For our analysis 
in the form of purely temporal correlation functions measured at a fixed position, 
we have Ax = 0 in (2.6). If we additionally neglect in the first instance c1 = 0.09 
compared with 1, leading to Cl  = 1, the experimental analysis of this expression is 
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FIGURE 11. Temporal autocorrelation functions of the noise-induced convection structures. These 
functions are obtained from measurements similar to those shown in figure 9. From the profile 
lines taken every 2 s for 4096 s altogether, the functions are calculated at 64 fixed locations around 
x = +3d and then added together, yielding the measurement points represented by the closed 
squares. The lines are fits of (5.2), which obviously describes the experiments quite well. The 
functions are normalized to their maximal values at At = 0 and are calculated for time delays up 
to At = 256 s. The temperature differences are ( a )  A T  = 10.58 K ( E  = 0.055), ( b )  A T  = 10.24 K 
( E  = 0.021), ( c )  A T  = 10.06 K ( E  = 0.003). 

further simplified without losing essential information. The analytical expression for 
the temporal correlation function of the light intensity is then given by 

The fast variation with the Hopf frequency has to be reintroduced to take care of 
the rapid oscillation observed in the experimental system (Schopf & Zimmermann 
1993; actually the amplitude equation (2.4) describes the deviations from this fast 
oscillation). This result can be fitted to the measurement points, and is represented 
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by the lines shown in figure 11 and thus obviously describes the experimental date 
quite well. For a real quantitative interpretation, however, the dependence of the 
parameters of (5.2) on the control parameter E has to be examined. From the fits, we 
obtain besides the frequency o the mean intensity variation 1 and the two correlation 
times to and tl, the latter three being expected to diverge at the critical point where 
they obey different laws (Schopf & Zimmermann 1993). It is known from finite 
systems undergoing a Hopf bifurcation that owing to the non-perfect reflection of the 
travelling waves from the sidewalls the onset of nonlinear convection occurs at E F ~  
(see also $4). Therefore the shifted control parameter E = (AT - AT,"f)/AT,"f has to 
be used for analysing the scaling laws. In our experiment the divergence point for the 
parameters of interest is indeed given by this reflection-induced onset of nonlinear 
convection (see figure 12). 

Fitting (5.2) to the obtained correlation functions analogously to figure 11 for all 
the measurements, the important parameters can be extracted as functions of the 
temperature difference. These parameters are shown in figure 12 and will now be 
discussed in turn. The open squares correspond to increasing and the closed circles 
to decreasing AT, hence no hysteresis effects are present. The small arrows inside the 
lower two pictures indicate the onset of the convective instability at AT = 10.03 K 
( E  = 0). 

Figures 12(a) and 12(b) show the correlation times t o  and tl, which measure the 
decay of a spatially uniform and a spatially modulated state, respectively. For too 
small temperature differences, the uncertainties become so large that the data no 
longer make a meaningful contribution (see e.g. figure l l c )  and are therefore not 
shown. The lines are fits of the expected laws (Schopf & Zimmermann 1993) 

and obviously describe the data quite well yielding zo = 47 s and <0/vg = 23 s. It 
should be mentioned that a simple single-mode model as discussed in $6, by (6.1) 
only involves one decay time to, which moreover is not compatible with the respective 
decay law. 

The frequency o shown in figure 12(c) can be determined very well especially for 
large AT (see e.g. figure lla, b). For smaller temperature differences, the correlation 
functions are noisier (see e.g. the lowest picture of figure 11) leading to a larger scatter 
for the extracted frequency. The slight increase with AT can be understood from a 
linear analysis of the amplitude equation (4.1). 

With help of (3.6) the intensity variation f obtained from these procedures can 
now be converted into the temperature variation via peXP = (f/2500) 0.64 K, which is 
shown by the symbols in figure 12(d). Following Schopf & Zimmermann (1993), this 
should be described by FeXP = ?o/(-E);.  However, it has to be taken into account 
that the measured structures are already amplified by the convective instability, hence 
this ?exp is not the strength of the basic fluctuations that have induced the convection 
structures. Rather an amplification factor has to be considered when comparing the 
experimental data with the theory, yielding 

with 
AT -AT? 

E =  
AT? 

AT  AT;^ 
A ~ p f  

and E =  

(5 .4~)  

(5.4b) 
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FIGURE 12. Final results for the noise-induced convection structures. The parameters are obtained 
from fits of (5.2) to the measured correlation function similar to those shown in figure 11. The 
respective values are given as functions of the applied temperature difference AT for increasing 
(open squares) and for decreasing (closed circles) AT. The lines are fits of the theoretically expected 
scaling laws. The small arrow in the lower two pictures indicates the onset of the convective 
instability at AT = 10.03 K ( E  = 0). (a) Correlation time to,  ( b )  correlation time t l ,  (c) frequency w, 
(d) mean temperature variation ?. 

as the correct law. x, is the average distance between the origin of the convective 
structures and the measurement point and Po is the noise strength that is responsible. 
The fit of (5 .4~)  to the experimental data is represented by the line in figure 12(d), 
which without the inclusion of the &-dependent amplification factor would not describe 
the data correctly. Also the law K ( - - ~ ) - f  following from the single-mode model 
discussed by (6.1) below is not sufficient. For the fit of (5.4), a constant offset is 
included in order to account for systematical errors. The best agreement with the 
theoretical model is achieved for a value of about 0.12 mK for this offset, while 
the values of AT,"" and ATFf are kept fixed to 10.03 and 10.60 K, respectively, 
This procedure finally gives x, = (12.8 k 0.5) d, thus indicating that the fluctuations 
responsible for our measurements originate somewhere inside the opposite ramp. For 
the experimental noise strength we find 

f'o,exp F=: (6.3 0.9) x K. (5.5a) 
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This value can be calculated theoretically from the fundamental hydrodynamic equa- 
tions, when the noise is assumed to be due to thermal fluctuations (Schopf & 
Zimmermann 1993). Doing this analogously to our experiment as the average over 
the entire vertical dimension of the convection cell, we get 

rjb,theo = 5.3 x lop6 K. (5.5b) 

Taking into account the extremely small convection amplitudes giving rise to the 
experimental difficulties described, this can be considered as a very good agreement. 
Hence the observed convection structures can be interpreted as the manifestation of 
thermal noise. 

It is very remarkable that the measured fluctuations can be explained in terms 
of the intrinsic thermal noise alone, without assuming any additional noise sources. 
This indicates that the external fluctuations of the control parameter as shown in 
figure 2(c) are not effective in producing convection patterns. An explanation of this 
finding might be the fact that these fluctuations have a very long wavelength, which 
is given by the order of the length of the convection channel. They are thus inefficient 
in producing convection rolls, which have a much shorter wavelength. 

6. Discussion 
The experiments described in this paper make use of the convective instability which 

arises as a consequence of the Hopf bifurcation occurring in binary fluid mixtures 
for negative separation ratios. With the help of a specially designed convection 
channel, the reflection of the travelling waves from the sidewalls could be drastically 
reduced, so that the onset of nonlinear convection was shifted by a relative amount 
of the control parameter of about 6%. Therefore, homogeneous disturbances could 
not trigger the convection onset before the positive value of E = 0.058 is reached, 
thus opening a relatively large range of the convective instability, inside which linear 
features of the system can be investigated. The reflection behaviour was identified 
by stimulating the system from outside with its own Hopf frequency, a procedure 
which additionally yields some of the linear coefficients of the amplitude equation 
being used to describe the convection near onset. These coefficients deviate to some 
extent from the values calculated directly from the basic hydrodynamic equations. 
The calculations, however, were performed for a two-dimensional infinitely extended 
system. For narrow systems like the quasi-one-dimensional convection apparatus used 
in our experiment, such calculations have not been carried out yet. 

The main results of our measurements are extracted from the behaviour of the 
convection patterns with extremely small amplitudes found in the subcritical range. 
Besides a good thermal insulation of the experimental apparatus and a very high 
sensitivity of the shadowgraph method used for quantifying the convection structures, 
the investigation of these patterns was made possible mainly by the intrinsic ampli- 
fication of the structures due to the convective instability. For the data obtained at 
temperature differences near ~ y f ,  which are most responsible for the determination 
of the noise strength, the amplification factor reached values between 20 and 100. 
The strength of the perturbations triggering the convective structures is in very good 
agreement with theoretical predictions if thermal noise is assumed to be the reason 
for the disturbances. However, a critical discussion of different interpretations seems 
to be appropriate. 

At first sight, these states may be assumed to be related to the formerly observed 
‘blinking states’ (see e.g. Fineberg, Moses & Steinberg 1988; Kolodner & Surko 1988; 
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Steinberg et al. 1989). The latter can be explained theoretically by the interaction 
and superposition of travelling waves reflected from the boundaries using coupled 
amplitude equations (Cross 1986, 1988). In our experiment, however, nonlinear 
interactions are unlikely to have a measurable influence because of the extremely 
small convection amplitudes. As discussed in $4, reflection should also not play 
any significant role. Moreover the theoretical analysis as well as the experimental 
observations of the ‘blinking states’ indicate a qualitatively different scenario when 
changing the temperature difference. This is definitely not the case in our experiment, 
where the erratic character shown in figure 9 persists over the entire range of A& w 0.08, 
where these structures could be observed. An explanation in the form of ‘blinking 
states’ can therefore be excluded. 

For similar reasons, we do not think that our results can be explained in terms 
of the ‘dispersive chaos’ found by Kolodner et al. (1990) in an annular convection 
apparatus for much smaller values of Iy I. This scenario is an interplay of convectively 
amplified small structures, which finally break down and decay owing to nonlinear 
dispersion. This latter part has never been observed in our experiments, where rather 
the waves decay owing to the presence of the ramps. Again we want to emphasize 
that we found no hint of a nonlinear behaviour. According to the results given by 
Kolodner et al. (1990), the characteristics of the ‘dispersive chaos’ change qualitatively 
with varying the temperature difference, a fact which is dissimilar to our experiment. 
Also, those authors did not find these states for y d -0.05. 

As another possibility for the theoretical modelling, a simpler decay law for the 
correlation function in the form of 

“ 2  -t 
fo,(Z,At) = I e to cos(oAt) (6.1) 

could be assumed in the first instance, guided by the measurements (see figure 11). 
This law can indeed be derived from a theory involving a noise term, when no spatial 
variations are considered, i.e. from a single-mode model like for example (2.4) without 
spatial derivatives. Equation (6.1) could also describe the measurements shown in 
figure 11, yielding information about the average light intensity ?, the frequency co 
and the decay time to. For this model, the intensity should vary like f cc ( - - ~ ) - f  
and the decay time like to cc (-&)-’; however, neither of these is compatible with 
the experimental data. Hence, even if this simple model could be used to determine 
correctly the frequency and the amplitude of the structure, it is not sufficent to explain 
our experiment. The more sophisticated theory leading to the expression (5.2) for the 
correlation function, on the other hand, not only describes the experiments quite well, 
but also shows the correct behaviour of the extracted experimental parameters. 

At this point we would like to correct some errors occurring in our preceding 
paper, where some of the results have been briefly presented (Schopf & Rehberg 
1992). Although the main conclusions are correct, the presentation, especially of 
figure 5 there, could give rise to some confusion. The theory on this topic has also 
been improved in the meantime. The fluid mixture was claimed to consist of 16.98 % 
ethanol, while the correct value is 22.04 % corresponding to L = 0.009, Pr = 15.5 and 
y = -0.125. These parameters were determined using a program which meanwhile 
was kindly made available by P. Kolodner (see also Kolodner et al. 1988). For 
calculating the correlation times, a factor of 2 was overlooked, so that the results for 
to and tl given by Schopf & Rehberg (1992) have to be multiplied by 2 (also in figure 5 
therein). Also in figure 5, rather than o, f = o/2n was shown. Finally, instead of 
? the value 4Zocfo? was plotted, where moreover the change of the refractive index 
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due to the concentration variation has not been taken into account (see $3.2). For 
comparison with theory, calculations valid for free permeable boundary conditions 
were cited, while the results for realistic boundaries now exist. 

In summary, we have measured hydrodynamic fluctuations of thermal origin by 
using the convective instability, which was treated by a somewhat simplified procedure 
in the theoretical analysis. A more detailed theoretical modelling of our data is 
currently in progress (private communication by G. Ahlers). The measurements 
shown in figure 11 suggest that a direct observation without the use of an intrinsic 
amplification should also be possible below E = 0, if a convection cell of smaller 
height is used. In this connection it is worth pointing out that a direct observation of 
such thermal fluctuations seems also possible in Rayleigh-Btnard convection in a gas 
(see Bodenschatz et al. 1992). Moreover, the possibility of measuring the influence 
of thermal noise on Taylor vortices is currently under investigation (Babcock, Ahlers 
& Cannell 1991; Tsameret & Steinberg 1991; Babcock, Cannell & Ahlers 1992). 
Thus, hydrodynamic fluctuations may become observable for a growing number of 
hydrodynamic instabilities, which gives rise to the hope that even the theoretical 
ideas concerning the nonlinear interaction of these fluctuations might be tested 
experimentally in the near future. 

We would like to thank G. Ahlers, H.R. Brand, P. Kolodner, M. Lucke, V. 
Steinberg and especially L. Kramer for many discussions and stimulating criticism. 
The experiments were supported by Stiftung Volkswagenwerk and by a NATO 
Collaborative Research Grant 9101 12. 
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